Erdős–Ko–Rado theorems on the weak Bruhat lattice
نویسندگان
چکیده
منابع مشابه
Descents and the Weak Bruhat order
Let Dk be the set of permutations in Sn with k descents and Ak be the set of permutations with k ascents. For permutations of type A, which are the usual symmetric group elements, bijections σ : Dk → Ak satisfying σ(w) ≥ w in the weak Bruhat ordering are constructed for k = 1 and k = 2. Such a bijection is also described explicitly for k = 1 for permutations of type B. We discuss how this bijec...
متن کاملComputing the Size of Intervals in the Weak Bruhat Order
The weak Bruhat order on Sn is the partial order ≺ so that σ ≺ τ whenever the set of inversions of σ is a subset of the set of inversions of τ . We investigate the time complexity of computing the size of intervals with respect to ≺. Using relationships between two-dimensional posets and the weak Bruhat order, we show that the size of the interval [σ1, σ2] can be computed in polynomial time whe...
متن کاملFrom the Weak Bruhat Order to Crystal Posets
We investigate the ways in which fundamental properties of the weak Bruhat order on a Weyl group can be lifted (or not) to a corresponding highest weight crystal graph, viewed as a partially ordered set; the latter projects to the weak order via the key map. First, a crystal theoretic analogue of the statement that any two reduced expressions for the same Coxeter group element are related by Co...
متن کاملWeak Lefschetz Theorems
A new approach to Nori's weak Lefschetz theorem is described. The new approach, which involves the ¯ ∂-method, avoids moving arguments and gives much stronger results. In particular, it is proved that if X and Y are connected smooth projective varieties of positive dimension and f : Y − → X is a holomorphic immersion with ample normal bundle, then the image of π 1 (Y) in π 1 (X) is of finite in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2019
ISSN: 0166-218X
DOI: 10.1016/j.dam.2018.12.019